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The method of joinpoint regression has been used in numerous domains to assess changes in time series data, 
including such things as cancer mortality rates, motor vehicle collision mortalities, and disease risk. To help 
improve estimation of population parameters for use in ecological risk assessment and management, we present 
a simulation and analysis to describe the utility of this method for the ecological domain. We demonstrate 
how joinpoint regression can accurately identify if the population structure changes based on time series of 
abundance, as well as identify when this change occurs. In addition, we compare and contrast population 
parameter estimates derived through joinpoint and surplus production methods to those derived from standard 
surplus production methods alone. When considering a change point at 32 years (out of a 64 year simulation), 
the joinpoint regression model was able, on average, to estimate a joinpoint time of 32.31 years with a variance 
of 6.82 and 95% confidence interval for the mean relative bias of (0.0085, 0.0112). The model was able to 
consistently estimate population parameters, with variance of these estimations decreasing as the change in 
these population parameters increased. We conclude that joinpoint regression be added to the list of methods 
employed by those who assess ecological risk to allow for a more accurate and complete understanding of 
population dynamics.
1. Introduction

As the global population approaches an estimated 9 billion people 
by 2030 (Department of Economic & Social Affairs: Population Division, 
2017), the need to sustainably manage populations of species that pro-

vide food or economic value to communities becomes paramount. This 
is particularly important to remote Indigenous populations that rely on 
country-food for subsistence, wellbeing, tradition, and culture. Unfor-

tunately, the literature is full of examples where over-harvesting, loss 
of breeding-habitat, or other anthropogenic activities have negatively 
affected the sustainability of a wild animal population (see, for exam-

ple (Flockhart et al., 2014; Poudyal et al., 2009; Rushing et al., 2016)). 
Two recent and well known Canadian examples include the decline of 
the northern caribou (Rangifer tarandus groenlandicus/Rangifer tarandus 
granti), and the collapse of the Atlantic cod (Gadus morhua) industry 
of Newfoundland and Labrador. In the former case, caribou numbers 
have fallen significantly in the last 20 years, with current population 
estimates 70% lower than observed in the late nineties (Parlee et al., 
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2018). Recent research has indicated that the population collapse is 
likely attributed to the effect of mining operations in Northern Canada 
(Parlee et al., 2018). In the latter case, increased harvesting led to the 
collapse of the Atlantic cod population and industry in the early 1990s 
(Hutchings and Myers, 1994; Myers et al., 1996). After almost 30 years, 
the population has not returned to its former levels (Pederson et al., 
2017). In both cases, the effects have been profound and widespread, 
negatively affecting employment, local economies, and the various di-

mensions of health and wellbeing (Gien, 2000; Prowse et al., 2009).

Risk assessment models, such as the surplus production model, the 
stage-structured model, or the agent-based model, are often used by 
managers and decision makers to assess and evaluate the status of 
animal populations (Hilborn and Walters, 2001; Rose et al., 2017). 
While varying in complexity, the models provide managers with esti-

mates of population parameters which can be used to understand the 
current state of the population and to project the effect of various 
management decisions on the sustainability of the population in ques-

tion.
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1.1. Surplus production models

The surplus production models, also known as biomass dynamic 
models, is a simple yet effective model used in fishery science for stock 
assessment (Hilborn and Walters, 2001). In surplus production models, 
the population’s biomass 𝐵 at time 𝑡 given population growth rate 𝑟, 
carrying capacity 𝐾 , and harvest 𝐶 is given by:

𝐵𝑡 = 𝐵𝑡−1 + 𝑟𝐵𝑡−1

(
1 −

𝐵𝑡−1
𝐾

)
− 𝐶𝑡−1 (1)

where the harvest 𝐶 at time 𝑡 given catchability coefficient 𝑞 and har-

vest efforts 𝐸 is given by:

𝐶𝑡 = 𝑞𝐵𝑡𝐸𝑡 (2)

In most cases, these parameters are assumed to be constant across 
the time series, or drawn from a particular distribution (Hilborn and 
Walters, 2001). Using estimates of these population parameters allows 
managers to estimate the population’s maximum sustainable yield for a 
particular period of time (Polacheck et al., 1993). This information can 
be used to evaluate management decisions under the assumption that 
the estimates are estimated well, and that there will be no change to 
them in the foreseeable future.

However, standard surplus production models and other risk assess-

ment models fail to account for sudden changes in population dynamics 
that result from, for example, anthropogenic activities. Changes to mi-

gration pathways, loss of breeding grounds, or other issues associated 
with industrial development, climate change, or pollution (for exam-

ple) could suddenly alter the dynamics and long-term stability of a 
population. Failure to consider changes to the dynamics of the popula-

tion during the modelling process might lead to estimates of population 
parameters that fail to provide realistic projections of management de-

cisions. For animal populations already suffering from the effects of 
anthropogenic activities, management actions based on poorly assessed 
data could be disastrous. As such, there is a need to explore risk models 
that allow for changes in population structure within an observed time 
series of data, as this could improve our understanding of the dynam-

ics of a population and improve our ability to manage it effectively and 
sustainably (Sprent, 1961).

1.2. Joinpoint regression

One method that has been identified as a valuable tool for making 
inferences about changes in trends over time is joinpoint regression (see 
for example Barrio et al. (2015); Lopez-Campos et al. (2014); Bosetti et 
al. (2011); Long et al. (2014); Yu et al. (2009)). It has been used, for ex-

ample, to accurately estimate changes in rates of driver deaths after the 
implementation of new traffic regulations (Barrio et al., 2015), to esti-

mate changing trends in cancer incidence in countries such as Canada, 
United Kingdom, Japan, and Italy (among many other countries) (Jiang 
et al., 2010; Qiu et al., 2009; Crispo et al., 2013; Wilson et al., 2017), 
and to analyze changes in suicide rates in Denmark (Dyvesether et al., 
2018). These studies, all of which assess changes in time series data 
that happen following various interventions or changes in external con-

ditions, suggest the potential utility of joinpoint regression to identify 
and evaluate when/if changes in population parameters occur. To our 
knowledge, however, joinpoint regression has not been used in this 
manner during the risk assessment process of populations of animals.

Joinpoint regression, also known as change point regression or seg-

mented regression, assumes that data can be divided into subsets - each 
with their own unique linear trend. For example, if we were to ana-

lyze a time series with two different trends, we might find that when 
𝑡 < 𝑡∗, the model has a particular intercept and slope, and when 𝑡 ≥ 𝑡∗, 
the model would have a different intercept and slope. In this instance, 
𝑡∗ represents the joinpoint; a point in time when the population param-

eters change. In a population setting, joinpoint regression could be used 
2

to improve models in the case where anthropogenic activities, for ex-

ample, move a species from a period of stability to a period of decline.

In general, given data vector 𝐲 = (𝑦1, 𝑦2, … , 𝑦𝑛) with covariate vector 
𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛), and joinpoint vector 𝜏 = (𝜏1, … , 𝜏𝑘), a joinpoint model 
is described as:

𝑦𝑖 =

⎧⎪⎪⎨⎪⎪⎩

𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖, 𝑥𝑖 < 𝜏1
𝛽0 + 𝛽1𝑥𝑖 + 𝛿1(𝑥𝑖 − 𝜏1) + 𝜖𝑖, 𝜏1 ≤ 𝑥𝑖 < 𝜏2
⋮ ⋮
𝛽0 + 𝛽1𝑥𝑖 + 𝛿𝑘−1(𝑥𝑖 − 𝜏𝑘−1) + 𝜖𝑖, 𝜏𝑘−1 ≤ 𝑥𝑖 < 𝜏𝑘
𝛽0 + 𝛽1𝑥𝑖 + 𝛿𝑘(𝑥𝑖 − 𝜏𝑘) + 𝜖𝑖, 𝜏𝑘 ≤ 𝑥𝑖

, (3)

where 𝛽0, 𝛽1, 𝛿1, … 𝛿𝑘 are regression coefficients (with 𝛿1, … 𝛿𝑘 being 
slope differences given time period 𝜏) and 𝜖𝑖 ∼ 𝑁(0, 𝜎2). That is, the 
joinpoint model assumes linearity, and errors 𝜖𝑖 are independent and 
normally distributed (Sprent, 1961; Hinkley, 1971; Jiang et al., 2010).

This paper will explore the use of joinpoint regression analysis in the 
area of ecological risk assessment. More specifically, the goal of this pa-

per is to determine the effectiveness of joinpoint regression to improve 
the estimates of population parameters derived from the standard sur-

plus production model. To achieve this goal it becomes necessary to 
satisfy the following objectives: 1) determine if joinpoint regression 
can be used to identify if and when population structure changes oc-

cur based on time series of abundance, and 2) compare and contrast 
population parameter estimates derived through joinpoint and surplus 
production methods to those derived from standard surplus production 
methods alone.

2. Methods

To evaluate the effectiveness of joinpoint regression to improve the 
estimation of population parameters over a range of situations, a stan-

dard surplus production model as in Equation (1) was developed to 
allow for a change in the growth rate (𝑟), and the catchability coeffi-

cient (𝑞), in year 32 of a 64 year time series. Specifically, Equation (1)

was reformulated in terms of a general joinpoint equation as in Equa-

tion (3), and data were simulated from the standard surplus production 
model

𝐵𝑡 =
⎧⎪⎨⎪⎩
𝐵𝑡−1 + 𝑟1𝐵𝑡−1

(
1 − 𝐵𝑡−1

𝐾

)
−𝐶𝑡−1, 𝑡 < 32

𝐵𝑡−1 + 𝑟2𝐵𝑡−1

(
1 − 𝐵𝑡−1

𝐾

)
−𝐶𝑡−1, 𝑡 ≥ 32

, (4)

where 𝐵, 𝑟 (separated into 𝑟1 and 𝑟2), 𝐾 , and 𝐶 are as described in 
Equation (1), and 𝑡 is the discrete time step in years. Harvest 𝐶 as in 
Equation (2) was also reformulated in terms of a general joinpoint equa-

tion as in Equation (3) to arrive at

𝐶𝑡 =
{

𝑞1𝐵𝑡𝐸𝑡𝑒
𝜖𝑡 , 𝑡 < 32

𝑞2𝐵𝑡𝐸𝑡𝑒
𝜖𝑡 , 𝑡 ≥ 32 , (5)

where 𝐸𝑡 is the total yearly effort in year 𝑡 measured in metres of 
net, and sampled from a Poisson distribution with mean parameter 
𝜆 = 10, 000, 𝜖𝑡 ∼ 𝑁(0, 10−1) is a random normal variate, and 𝑞1 and 𝑞2
are the catchability coefficients for period 1 and period 2, respectively.

For each simulation, 𝑟1, 𝑟2, 𝑞1, and 𝑞2 were randomly sampled as 
follows: 𝑟1 was randomly drawn from the set {0.55, 0.60, 0.65, 0.70, 
0.75, 0.80, 0.85, 0.90}, 𝑟2 was randomly drawn from the set {0.20, 
0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55}, 𝑞1 was randomly drawn from 
the set {1.0 ×10−5, 1.5 ×10−5, 2.0 ×10−5, 2.5 ×10−5}, and 𝑞2 was randomly 
drawn from the set {2.0 × 10−5, 2.5 × 10−5, 3.0 × 10−5}. The sets were 
created to ensure 𝑟1 ≥ 𝑟2, and to allow for a range of changes to growth 
rate, and to the catchability coefficient (identified by 𝛿𝑟 = 𝑟1 − 𝑟2, and 
𝛿𝑞 = 𝑞1 − 𝑞2, respectively) at time 𝑡 = 32.

Once the growth rates and catchability coefficients were selected, 𝐵0
was set to 1,500,000, and 𝐾 to 2,000,000. Equations (4) and (5) were 
updated with 𝑟1, 𝑞1, 𝐵0, and 𝐾 , and allowed to run for 32 years to allow 
the simulated population to stabilize (see stabilization period in Fig. 1). 
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Fig. 1. Simulated time series of biomass (black line) and catch (blue line) data 
by year. Data were generated assuming 𝐵0 = 1, 500, 000, and 𝐾 = 2, 000, 000. 
For each simulation, 32 years of data (stabilization period, to the left of the 
dashed red line) were generated to ensure the simulated population was stable. 
Following this, data were generated assuming growth rate 𝑟1 and catchability 
coefficient 𝑞1 up to year 64 (period 1, between the dashed and dotted red lines). 
Finally, the population structure was updated to allow a growth rate of 𝑟2 and 
catchability coefficient of 𝑞2 (period 2, to the right of the dotted red line).

At the end of the 32 year stabilization period, 𝑡 was reset to 0, and 𝐵0
was set to 𝐵32 (see period 1 in Fig. 1). The simulation was allowed to 
run for another 32 years, at which 𝑟1 and 𝑞1 were updated to 𝑟2 and 𝑞2. 
Finally, the simulation was allowed to run for another 32 years. Time 
series of both 𝐵 and 𝐶 were extracted and processed for each of the 
following three scenarios:

1. Scenario 1 (joinpoint ignored): the 64 year time series catch data 
were analyzed using a standard surplus production model, ignoring 
the joinpoint at time 𝑡 = 32,

2. Scenario 2 (joinpoint estimated): the 64 year time series catch 
data were analyzed using the surplus production model described 
by Equations (4) and (5), using an estimated joinpoint, and

3. Scenario 3 (joinpoint known): the 64 year time series catch data 
were analyzed using the surplus production model described by 
Equations (4) and (5), assuming that the true joinpoint was known.

To estimate the growth rate(s) and catchability coefficient(s), Equa-

tion (4) was multiplied by 1
𝐾

and then 𝐵𝑡 was expressed as a proportion 
of 𝐾 (i.e. 𝑃𝑡 =

𝐵𝑡

𝐾
), and Equation (5) was re-expressed in terms of catch 

per unit effort 𝐼𝑡 (i.e. 𝐼𝑡 =
𝐶𝑡

𝐸𝑡
):

𝑃𝑡 =
⎧⎪⎨⎪⎩
𝑃𝑡−1 + 𝑟1𝑃𝑡−1

(
1 − 𝑃𝑡−1

)
− 𝐶𝑡−1

𝐾
, 𝑡 < 32

𝑃𝑡−1 + 𝑟2𝑃𝑡−1
(
1 − 𝑃𝑡−1

)
− 𝐶𝑡−1

𝐾
, 𝑡 ≥ 32

, (6)

𝐼𝑡 =
{

𝑞1𝑃𝑡𝐾, 𝑡 < 32
𝑞2𝑃𝑡𝐾, 𝑡 ≥ 32 . (7)

The model was implemented using the JAGS software (see JAGS 
Code in Supplementary Files), and evaluated using the rjags and coda

packages in R (see R Code in Supplementary Files) (Plummer, 2015; 
R Core Team, 2014; Plummer et al., 2006). Bayesian priors were as-

signed assuming 𝑃𝑡 and 𝐼𝑡 had log normal distributions with means as 
described for each scenario below. To ensure reasonable samples for 
𝑃𝑡, the distributions were truncated above and below. Finally, distribu-

tions for 𝑃𝑡 and 𝐼𝑡 were assigned variances 𝜎 and 𝜏 , respectively. Both 
𝜎−1 and 𝜏−1 were assigned Gamma hyper priors.
3

Simulated catch and harvest data were analyzed for each of the sce-

narios in the following ways:

• Scenario 1 (joinpoint ignored): Equations (6) and (7) were up-

dated to include a single growth rate, and a single catchability 
coefficient. That is, 𝑟1 and 𝑟2 were replaced with 𝑟, and 𝑞1 and 
𝑞2 were replaced with 𝑞. Further, log normal priors for 𝑃𝑡 and 𝐼𝑡
were assigned means of 𝑃𝑡−1 + 𝑟𝑃𝑡−1

(
1 − 𝑃𝑡−1

)
− 𝐶𝑡−1

𝐾
, and 𝑞𝑃𝑡𝐾 .

• Scenario 2 (joinpoint estimated): Equations (6) and (7) were up-

dated for scenario 2 to reflect the case where the joinpoint was 
estimated. Specifically, letting 𝑡∗ represent the estimated joinpoint, 
we replaced 𝑟1 and 𝑞1 with 𝑟∗1 and 𝑞∗1 when 𝑡 < 𝑡∗, and 𝑟2 with 
𝑟∗2 and 𝑞2 with 𝑞∗2 when 𝑡 ≥ 𝑡∗. Log normal priors were assigned 
means of 𝑃𝑡−1 + 𝑟∗

𝑖
𝑃𝑡−1

(
1 − 𝑃𝑡−1

)
− 𝐶𝑡−1

𝐾
, and 𝑞∗

𝑖
𝑃𝑡𝐾 , respectively 

(where 𝑖 = 1 if 𝑡 < 𝑡∗, and 𝑖 = 2 if 𝑡 ≥ 𝑡∗). To estimate the time of 
the joinpoint required for scenario 2, a simple linear model (i.e. 
𝐼𝑡 = 𝛽0 + 𝛽1𝑡) was created, and used with the segmented package in 
R (R Core Team, 2014; Muggeo, 2003, 2008). Although the join-

point was known to occur at time 𝑡 = 32, the segmented function 
was parameterized and initialized to allow for two joinpoints. This 
was repeated five times, with initialized joinpoint values of (16, 
48), (18, 46), (20, 44), (22, 42), and (24, 40). The decision to use 
two joinpoints would account for changes to population dynamics 
that might present themselves over the course of several years, in-

stead of instantaneously. In this way, the segmented function might 
identify three distinct periods within the population structure, in-

stead of simply pre and post joinpoint. For example, there could be 
a stable period of abundance prior to the joinpoint, followed by a 
period where abundance decreases or increases to a new period of 
stability. Estimated joinpoints 𝑡∗1𝑖 and 𝑡∗2𝑖, where 𝑡∗1𝑖 ≤ 𝑡∗2𝑖, were saved 
for each initialization set (𝑖 = 1, … , 5). The rounded average of the 
smaller joinpoint from each of the initialization sets was used to 
parameterize the JAGS model described previously. That is, 𝑡∗ was 
set 15

∑5
𝑖=1 𝑡

∗
1𝑖, rounded to the nearest integer value.

• Scenario 3 (joinpoint known): Analysis proceeded using Equa-

tions (6) and (7) without changes. Log normal priors were assigned 
means of 𝑃𝑡−1 + 𝑟∗

𝑖
𝑃𝑡−1

(
1 − 𝑃𝑡−1

)
− 𝐶𝑡−1

𝐾
, and 𝑞∗

𝑖
𝑃𝑡𝐾 , respectively 

(where 𝑖 = 1 if 𝑡 < 32, and 𝑖 = 2 if 𝑡 ≥ 32).

In the cases where the joinpoint analyses would not converge to a so-

lution, the simulation was rejected and new draws for 𝑟1, 𝑟2, 𝑞1, and 𝑞2
were made. In total, 13,513 simulations were conducted. Output from 
each of the three scenarios were summarized using the coda package in 
R (R Core Team, 2014; Plummer et al., 2006). Results were analyzed 
to evaluate the ability of the joinpoint regression to i) estimate the true 
joinpoint time 𝑡∗, ii) estimate the true joinpoint versus the change in 
growth rate between periods 1 and 2 (i.e. 𝛿𝑟 = ||𝑟1 − 𝑟2||), iii) estimate 
the true joinpoint versus the change in catchability coefficients between 
periods 1 and 2 (i.e. 𝛿𝑞 = ||𝑞1 − 𝑞2||), iv) identify the length of the tran-

sition period during which a stable population appeared following the 
joinpoint (i.e. abs

(
𝑡∗1 − 𝑡∗2

)
, where 𝑡∗1 has been previously defined, and 

𝑡∗2 =
1
5
∑5

𝑖=1 𝑡
∗
2𝑖) - see Fig. 2 - and, v) improve the estimates of growth 

rate and catchability compared to standard methods (i.e. when join-

points are ignored), or when the joinpoint is known a priori.

All simulations and analyses were completed using R: A Language 
and Environment for Statistical Computing (R Core Team, 2014) with 
a 13” MacBook Pro with a 2.7 GHz Intel Core i5 processor, and 16 GB

1867 MHz DDR3 RAM.

3. Results

Ignoring the randomly selected growth rates and catchability coeffi-

cients, the average estimated joinpoints 𝑡∗1 and 𝑡∗2 were 32.31 and 39.50, 
with variances of 6.82 and 14.05, respectively. The mean relative bias 
of 𝑡∗1 across all simulations was slightly positive. Specifically, the 95% 
confidence interval for the mean relative bias was (0.0085, 0.0112). 
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Fig. 2. Estimated joinpoints (green line) given simulated time series of abun-

dance (black line) and catch (blue line) data by year. Catch data were simulated 
assuming 𝐵0 = 1, 500, 000, and 𝐾 = 2, 000, 000 for 64 years. At time 𝑡 = 32 years, 
the population dynamics were adjusted to allow for a change in growth rate 
and catchability coefficient. The transition period (identified as the period be-

tween the two estimated joinpoints) represents the estimated length of time for 
the population to restabilize following a change in the dynamics.

Fig. 3. Estimated year of joinpoints (black dots) for each simulation versus the 
change in growth rate (pre and post joinpoint). The blue line represents the true 
joinpoint value of 𝑡 = 32 years. The red dashed line represents a simple linear 
regression of year of joinpoint versus change in growth rate.

Since 𝑡∗2 is an artifact of the analytical method and not reflective of a 
known value, relative bias can not be calculated. The average estimated 
joinpoint is consistent regardless of the magnitude of 𝛿𝑟, however, the 
variance of the estimated values decreases as 𝛿𝑟 increases (see Fig. 3).

For low values of 𝛿𝑟 (e.g. 𝛿𝑟 < 0.10), variance estimates are ap-

proximately 5 times that of those seen for 𝛿𝑟 ≥ 0.10. There is a slight 
upward trend in mean estimated joinpoint with increasing magnitude 
of 𝛿𝑞 . The variance of the estimated joinpoints appears to be stable ex-

cept in the case of larger 𝛿𝑞 , where the variation appears to double. 
However, there are fewer simulations with high 𝛿𝑞 , so this uptick may 
itself be a deviation from the norm. On average the transition period 
is approximately 7 years; a pattern which is consistent regardless of 
the magnitude of 𝛿𝑟 and 𝛿𝑞 . That is, following a change in growth rate 
and/or catchability coefficient, it takes on average 7 years for the pop-

ulation to restabilize. However, the transition period ranges in length 
from as little as 1.16 years, to as much as 50.85 years. Shorter transi-
4

Table 1

Mean relative bias of growth rate 𝑟1 (and standard deviation) given 𝛿𝑟 = 𝑟1 − 𝑟2
bins, where 𝑟1 is the growth rate prior to the joinpoint, and 𝑟2 is the growth 
rate following the joinpoint, by scenario. Scenario 1–3 indicate analysis assum-

ing no joinpoint, using the estimated joinpoint, or using the true joinpoint, 
respectively.

Bin Scenario 1 Scenario 2 Scenario 3

𝛿𝑟 ∈ [0.00,0.20] −13.73 (0.46) 2.28 (0.99) 27.36 (0.43)

𝛿𝑟 ∈ (0.20,0.45] −33.80 (0.49) −4.96 (0.69) 18.06 (0.33)

𝛿𝑟 ∈ (0.45,0.70] −51.68 (0.89) −13.11 (0.79) 4.75 (0.25)

Table 2

Mean relative bias of growth rate 𝑟2 (and standard deviation) given 𝛿𝑟 = 𝑟1 − 𝑟2
bins, where 𝑟1 is the growth rate prior to the joinpoint, and 𝑟2 is the growth 
rate following the joinpoint, by scenario. Scenario 1–3 indicate analysis assum-

ing no joinpoint, using the estimated joinpoint, or using the true joinpoint, 
respectively.

Bin Scenario 1 Scenario 2 Scenario 3

𝛿𝑟 ∈ [0.00,0.20] 0 (NaN) 4.85 (0.45) 1.85 (0.29)

𝛿𝑟 ∈ (0.20,0.45] 0 (NaN) −3.14 (0.35) 0.41 (0.10)

𝛿𝑟 ∈ (0.45,0.70] 0 (NaN) −0.70 (0.69) 10.08 (0.18)

tion periods are associated with higher values of 𝛿𝑟 and higher values 
of 𝛿𝑞 .

Distributions of the relative bias of the growth rate parameter 𝑟1 are 
provided in Fig. 4 for each scenario. For simplicity, the relative bias 
estimates are summarized given the magnitude of the change in growth 
before and after the joinpoint. Specifically, they are grouped based on 
the 𝛿𝑟 (see caption of Fig. 4 for binning).

The mean relative bias for 𝑟1 is negative for all binning situations 
when the experiments were analyzed assuming no change to the popula-

tion dynamics structure. That is, when there is no change in the growth 
rate or the catchability coefficient (i.e. Scenario 1), 𝑟1 is significantly 
underestimated, with average relative bias estimates for the largest 𝛿𝑟
of −51%. The magnitude of the relative bias increases as 𝛿𝑟 increases. 
Further, the relative bias also increases across scenarios within the 𝛿𝑟
bins. That is, for all 𝛿𝑟 bins, the relative bias is largest when using the 
true joinpoint. This is followed by the experiments using an estimated 
joinpoint, and finally by the experiments that ignored the joinpoint. For 
all 𝛿𝑟 bins, the average relative bias was positive, but decreased as 𝛿𝑟
increased. Average relative bias estimates can be found in Table 1.

As outlined in Table 1, the standard deviations of the mean relative 
bias increase as 𝛿𝑟 increases in Scenario 1, decreases as 𝛿𝑟 increases in 
Scenario 3, and fluctuates in Scenario 2.

Since Scenario 1 assumes that the population is governed by only 
one growth rate (e.g. 𝑟1), bias estimates could not be obtained for 𝑟2 for 
this scenario. Regardless, estimates could be determined for Scenarios 2 
and 3 (see Fig. 5). Relative bias estimates for 𝑟2 in Scenario 2 decrease 
as 𝛿𝑟 increases, but increase as 𝛿𝑟 increases for Scenario 3. The pattern 
of relative bias for 𝑟2 matches the pattern of relative bias for 𝑟1 given 
Scenario 2, but is opposite of that for Scenario 3. Standard deviations 
follow a similar pattern (Table 2).

Distributions of the relative bias of the catchability coefficient pa-

rameter 𝑞1 are provided in Fig. 6 for each scenario. For simplicity, the 
relative bias estimates are summarized given the magnitude of change 
in catchability before and after the joinpoint and group based on the 𝛿𝑞
(see caption of Fig. 6 for binning).

The mean relative bias for 𝑞1 is positive for all binning situations 
when the experiments were analyzed assuming no change to the popula-

tion dynamics structure. That is, when there is no change in the growth 
rate or the catchability coefficient (Scenario 1), 𝑞1 is significantly over-

estimated. In Scenarios 1 and 2, the magnitude of the relative bias 
appears to decrease as 𝛿𝑞 increases; in Scenario 3, the magnitude of 
the relative bias appears to increase as 𝛿𝑞 increases. Further, the rela-

tive bias decreases across scenarios within the 𝛿𝑞 bins. That is, for all 𝛿𝑞
bins, the relative bias is smallest when using the true joinpoint. This is 
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Fig. 4. Relative bias (%) of growth rate 𝑟1 given 𝛿𝑟 = 𝑟1 − 𝑟2, where 𝑟1 is the growth rate prior to the joinpoint, and 𝑟2 is the growth rate following the joinpoint, 
by scenario. Delta growth bins 1–3 (rows) include experiments where 𝛿𝑟 ≤ 0.20, 0.20 < 𝛿𝑟 ≤ 0.45, and 𝛿𝑟 > 0.45, respectively. Scenario 1–3 (columns) indicate analysis 
assuming no joinpoint, using the estimated joinpoint, or using the true joinpoint, respectively.
Table 3

Mean relative bias of catchability coefficient 𝑞1 (and standard deviation) given 
𝛿𝑞 = 𝑞1 − 𝑞2 bins, where 𝑞1 is the catchability coefficient prior to the join-

point, and 𝑞2 is the catchability coefficient following the joinpoint, by scenario. 
Scenario 1–3 indicate analysis assuming no joinpoint, using the estimated join-

point, or using the true joinpoint, respectively.

Bin Scenario 1 Scenario 2 Scenario 3

𝛿𝑞 ≤ −1.5 × 10−5 116.83 (2.58) 90.69 (1.67) −1.80 (0.12)

−1.5 × 10−5 < 𝛿𝑞 ≤ −5.0 × 10−06 72.36 (1.49) 17.97 (0.83) −6.48 (0.16)

𝛿𝑞 > −5.0 × 10−06 68.06 (1.26) −9.81 (0.27) −10.22 (0.25)

followed by the experiments using an estimated join, and finally by the 
experiments that ignored the joinpoint. For all 𝛿𝑞 bins, the average rel-

ative bias was positive, but decreased as 𝛿𝑞 increased. Average relative 
bias estimates can be found in Table 3

As outlined in Table 3, the standard deviations of the mean relative 
bias decrease as 𝛿𝑞 increases in Scenario 1 and 2, and increases as 𝛿𝑞
increases in Scenario 3.

Since scenario 1 assumes that the population is governed by only one 
catchability coefficient (e.g. 𝑞1), bias estimates could not be determined 
for 𝑞2 for this scenario. Regardless, estimates could be determined for 
Scenarios 2 and 3 (Fig. 7). Relative bias estimates for 𝑞2 in Scenario 
2 increase as 𝛿𝑞 increases, but decrease as 𝛿𝑞 increases for Scenario 3 
(Table 4).

4. Discussion

The goal of this paper was to present and evaluate the utility of join-

point regression analysis in the area of ecological risk assessment and 
5

Table 4

Mean relative bias of catchability coefficient 𝑞2 (and standard deviation) given 
𝛿𝑞 = 𝑞1 − 𝑞2 bins, where 𝑞1 is the catchability coefficient prior to the join-

point, and 𝑞2 is the catchability coefficient following the joinpoint, by scenario. 
Scenario 1–3 indicate analysis assuming no joinpoint, using the estimated join-

point, or using the true joinpoint, respectively.

Bin Scenario 1 Scenario 2 Scenario 3

𝛿𝑞 ≤ −1.5 × 10−5 0 (NaN) −20.51 (0.44) 4.17 (0.14)

−1.5 × 10−5 < 𝛿𝑞 ≤ −5.0 × 10−06 0 (NaN) −8.29 (0.31) 2.63 (0.19)

𝛿𝑞 > −5.0 × 10−06 0 (NaN) 11.12 (0.54) 0.78 (0.35)

population modelling. Joinpoint regression is known to be an effective 
tool for analyzing changes in trends in epidemiological and cancer-

related scenarios; however, little has been done on applying joinpoint 
regression to ecological risk assessment. To that end, we have proposed 
that joinpoint regression be combined with surplus production models 
to allow for the estimation of population parameters that might un-

dergo a sudden change given anthropogenic factors. In the following 
subsections, we discuss the ability of the joinpoint regression to i) es-

timate the true joinpoint time 𝑡∗, ii) estimate the true joinpoint versus 
the change in growth rate between periods 1 and 2 (i.e. 𝛿𝑟 = ||𝑟1 − 𝑟2||), 
iii) estimate the true joinpoint versus the change in catchability coef-

ficients between periods 1 and 2 (i.e. 𝛿𝑞 = ||𝑞1 − 𝑞2||), iv) identify the 
length of the transition period during which a stable population ap-

peared following the joinpoint (i.e. abs
(
𝑡∗1 − 𝑡∗2

)
) and, v) improve the 

estimates of growth rate and catchability compared to standard meth-

ods (i.e. when joinpoints are ignored), or when the joinpoint is known 
a priori.
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Fig. 5. Relative bias (%) of growth rate 𝑟2 given 𝛿𝑟 = 𝑟1 − 𝑟2, where 𝑟1 is the growth rate prior to the joinpoint, and 𝑟2 is the growth rate following the joinpoint, by 
scenario. Delta growth bins 1–3 (rows) include experiments where 𝛿𝑟 ≤ 0.20, 0.20 < 𝛿𝑟 ≤ 0.45, and 𝛿𝑟 > 0.45, respectively. Scenarios 2–3 (columns) indicate analysis 
assuming using the estimated joinpoint, or using the true joinpoint, respectively.
4.1. Estimation of true joinpoint time

The joinpoint regression model was able to effectively estimate the 
true joinpoint time 𝑡∗1 . That is, given a simulated time series that in-

cluded a point in time where the population dynamics changed, the 
model was able to provide a reasonable estimate of when this change 
occured. Although interval estimation was beyond the scope of the 
work for this study, Muggeo (2017) provides a smoothed score-based 
approach for interval estimation for joinpoint regression. This interval 
estimation method, now included in newer versions of the segmented

packaged in R, should be considered for future uses of this model when 
providing estimates of true joinpoint time (Muggeo, 2017).

It is important to note, however, that joinpoint regression models 
tended to perform better (i.e. estimate population parameters with low 
absolute relative bias) when the magnitude of change in the growth rate 
was large. This is evident based on the variances observed for each level 
of 𝛿𝑟 in the simulations. The variances observed were approximately 5 
times higher when 𝛿𝑟 < 0.10 compared to when 𝛿𝑟 ≥ 0.10. This can be 
viewed as a double-edged sword. On one hand, the joinpoint regression 
model may be able to prove itself effective to be able to detect changes 
in population trends that are not obvious by inspection alone, allow-

ing managers to potentially take action sooner if there is a negative 
change in population dynamics. On the other hand, joinpoint regres-

sion could be viewed as too sensitive of a model and estimate a change 
in population dynamics when there is no change. Further studies should 
investigate the effectiveness of joinpoint regression modelling in popu-

lations with little to no change in population dynamics.
6

4.2. Transition period length

Transition period length was a metric used to estimate how long it 
took for a population to re-stabilize after a change in population dynam-

ics. This was accomplished by allowing the joinpoint regression model 
to estimate two joinpoints: 𝑡∗1 —when the population dynamics changed, 
and 𝑡∗2 —the point in time where the population was re-stabilized fol-

lowing the change in population dynamics. The transition period was 
calculated as the average of the difference in these two estimated join-

points.

On average, the transition period length was approximately 7 years. 
However, this varied heavily depending on the magnitude of change in 
growth rate and catchability. For instance, in cases where the magni-

tude of change in population dynamics was small, the transition length 
tended to be longer. Two possible reasons exist to explain this. One ex-

planation could be that when there was a small change in population 
dynamics, the overall population may have only experienced a gen-

tle increase or decrease in total population over a long period of time 
before re-stabilizing (that is, neither increasing or decreasing in popula-

tion on average), thus drawing out the transition period time. Another 
explanation could be that when there was a small change in population 
dynamics, the joinpoint regression model wasn’t sensitive enough to 
pick up a distinct time when the population re-stabilized, which could 
also draw out the transition period. Future studies should investigate 
the effectiveness of joinpoint regression to provide an accurate tran-

sition period length in populations where the dynamics only change 
slightly.
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Fig. 6. Relative bias (%) of growth rate 𝑞1 given 𝛿𝑞 = 𝑞1 − 𝑞2, where 𝑞1 is the catchability prior to the joinpoint, and 𝑞2 is the catchability following the joinpoint, by 
scenario. Delta catchability bins 1–3 (rows) include experiments where 𝛿𝑞 ≤ −1.5 × 10−5 , −1.5 × 10−5 < 𝛿𝑞 ≤ −5.0 × 10−06 , and 𝛿𝑞 > −5.0 × 10−06 , respectively. Scenario 
1–3 (columns) indicate analysis assuming no joinpoint, using the estimated joinpoint, or using the true joinpoint, respectively.
4.3. Estimates of population dynamics

Simulated time series data were analyzed to estimate the growth 
rate and catchability coefficient for each of the three scenarios. As 
mentioned, since scenario 1 did not assume any change in population 
dynamics, only one growth rate and catchability coefficient were cal-

culated for the entire time series. This contrasts with scenario 2 and 
scenario 3 which had a growth rate and catchability coefficient es-

timated for the period before the joinpoint and the period after the 
joinpoint.

For each scenario, mean relative bias was used as an indicator of 
how close the estimates were to the true growth rate or catchability 
coefficient. Compared to simulations assuming no change in popula-

tion dynamics, the use of either an estimated joinpoint or the true 
joinpoint appeared to significantly decrease the mean relative bias of 
population parameter estimates. That is, when population parameters 
suddenly change, population dynamics could be more accurately es-

timated when using joinpoint regression. In comparing mean relative 
bias between estimates obtained with an estimated joinpoint versus the 
true joinpoint, while there are some minor differences, they were still 
significantly less biased than the scenario assuming no joinpoint. This 
would imply that even if a joinpoint is not known a priori, the use of 
an estimated joinpoint is still sufficient for more accurate estimates of 
population parameters.

4.4. Limitations and future work

In this study, we only investigated the case of a single joinpoint 
in time. Further studies could explore the effectiveness of joinpoint 
7

regression parameter estimates with models containing two or more 
joinpoints in time. With these multiple joinpoints, edge properties can 
be explored by having a joinpoint close to the beginning of a simulation, 
close to the end of a simulation, or both.

All of the scenarios we investigated used a constant carrying ca-

pacity 𝐾 throughout the simulation. This constant carrying capacity 
added an overall stability to the population once it stabilized after the 
preliminary 32 year period. Future studies should investigate joinpoint 
regression’s efficiency in a simulation that may have either a change in 
𝐾 at a certain point in time or a varying 𝐾 over a long period of time.

This study only investigated the case of a varying growth rate or 
catchability coefficient, where the population parameters before and 
after the joinpoint were sampled from finite and discrete sets. Further 
studies could allow 𝑟 or 𝑞 to be sampled from a distribution, rather than 
randomly sampled from a finite set.

It’s worth noting that, as mentioned before, growth rate 𝑟 is typically 
a stable population parameter (Hilborn and Walters, 2001), however for 
the purposes of this study, we chose to have a change in growth rate 
at time 𝑡 to investigate whether this change could even be picked up 
by the joinpoint model. Additionally, in a typical fishery environment, 
the growth rate 𝑟, if it does change, generally increases with increased 
exploitation. In our study, however, we chose to simply investigate a 
change in growth rate per se, and not necessarily related to increased 
exploitation. Future studies could seek to investigate a change in growth 
rate as it pertains to a change in exploitation.

All of the scenarios we investigated assumed nothing about the gear 
used for harvesting, except that it is constant through time. Future stud-

ies could look at whether a joinpoint regression can pick up changes in 
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Fig. 7. Relative bias (%) of growth rate 𝑞2 given 𝛿𝑞 = 𝑞1 − 𝑞2, where 𝑞1 is the catchability prior to the joinpoint, and 𝑞2 is the catchability following the joinpoint, by 
scenario. Delta catchability bins 1–3 (rows) include experiments where 𝛿𝑞 ≤ −1.5 × 10−5 , −1.5 × 10−5 < 𝛿𝑞 ≤ −5.0 × 10−06 , and 𝛿𝑞 > −5.0 × 10−06 , respectively. Scenario 
2–3 (columns) indicate analysis using the estimated joinpoint, or using the true joinpoint, respectively.
gear used for harvesting, regardless if there was an actual change in 
population parameters.

5. Conclusions

The results shown here are preliminary results for determining the 
effectiveness of joinpoint regression to improve population parameter 
estimates from standard surplus production models. In this paper, we 
aimed to 1) determine if joinpoint regression can be used to identify 
if and when population structure changes occur based on time series 
of abundance, and 2) compare and contrast population parameter es-

timates derived through joinpoint and surplus production methods to 
those derived from standard surplus production methods alone.

The joinpoint regression was consistently able to estimate the true 
joinpoint 𝑡∗, although these estimates tended to be more accurate as the 
magnitude of change in population parameters increased. This was ob-

vious in observing the population parameters estimates of both growth 
rate and catchability coefficient before and after the joinpoint in that 
the variance of estimates tended to decrease as the magnitude of change 
in either of the parameters increased. The change of magnitude in these 
population parameters also played a factor in calculating transition pe-

riod length in that a smaller change of magnitude tended to correspond 
with a longer transition period. Finally, relative bias of population pa-

rameter estimates tended to decrease when using either an estimated 
joinpoint time or true joinpoint time compared to estimates where no 
joinpoint time was assumed; that is, when using the joinpoint, whether 
it was the estimated or the true joinpoint, the estimates in population 
parameters were more accurate to the true value of the population pa-

rameter compared to the estimates that assume no joinpoint.
8

We have shown here how joinpoint regression can be used to im-

prove population parameter estimation in surplus production models. 
However, the use of joinpoint regression should be considered for other 
types of risk assessment modelling, such as age- or stage-structured pop-

ulation modelling, to gain a more accurate and complete understanding 
of population dynamics and changes that may occur through time.
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