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ABSTRACT
The North American Breeding Bird Survey (BBS) is the primary ecological monitoring 
program used to assess the population, status, and trends of North American birds. As 
such, accessible analysis of BBS data is crucial to wildlife conservation/management 
and ecological science in North America. The R package bbsBayes was developed as 
a wrapper for the analysis of BBS data using hierarchical Bayesian models, including 
the models currently used by the Canadian Wildlife Service and the United States 
Geological Survey. The goal of bbsBayes is to provide an accessible package for anyone 
in the conservation community to estimate population trajectories (time-series) and 
trends (rates of change) for any of the 400+ bird species monitored by the BBS, and to 
allow more advance users to easily access the data and model-templates necessary 
to customize an analysis for their research.
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(1) OVERVIEW
1.1 INTRODUCTION 
The North American Breeding Bird Survey (BBS) is a long-
term, broad-scale survey of bird populations in North 
America [1, 2]. It was designed to monitor changes 
in bird populations at relatively broad scales, such as 
continental, national, or states/provinces.  It was started 
in 1966 and the database now includes annual counts of 
over 500 species of birds across more than 5000 road-
side routes in Canada, the United States, and a few in 
Mexico [3]. The data collected by the BBS have been 
the primary source of data in more than 700 scientific 
publications to date [4].

The BBS provides highly structured data for generating 
annual indices of relative abundance through time to 
monitor population change [2, 5]. The relevant structure 
in the data come from the spatial design of the survey 
locations and the standardized field protocols that control 
effort among years. Each BBS route is established using 
a spatially stratified, random design, and consists of a 
sequence of 50 count locations (“stops”), approximately 
800 m apart, along a secondary road.  BBS observers, 
both professional and volunteer, are assigned one or 
more routes, which they survey annually, following a 
standardized protocol.  One morning each year, starting 
at 30 minutes before local sunrise, the observer conducts 
a 3-minute point count at each of the 50-stops, counting 
all the birds they can see and birds they can hear within 
400 m [2]. The highly structured data from the BBS can 
be combined with less structured data, such as those 
from eBird [6], and statistical approaches to integrating 
data across programs are an area of active research [7, 
8]. With model-based controls for variations in effort, 
eBird data may also support inference about population 
change over the short-term [9]. However, the hierarchical 
Bayesian modelling of the BBS data that we discuss here 
still provide the most reliable estimates of broad-scale 
and long-term changes in bird populations. 

Estimates of population trends (rates of change in 
population size) and the associated trajectories (series of 
annual estimates of relative abundance) are derived from 
the BBS data annually by federal government agencies 
in the U.S.A. [2] and Canada [10]. These trends and 
trajectory estimates are used by government, academic, 
and public organizations to monitor bird populations, set 
priorities for conservation, identify species at risk, and 
explore fundamental ecological relationships [3, 10]. For 
example, BBS status and trend estimates were a major 
component of the study that estimated a loss of almost 
3 billion birds from North America since 1970 [11]. BBS 
status and trend estimates also provide much of the 
information used in State of Birds reporting in the U.S.A. 
and Canada [12, 13]. Additionally, in Canada, estimates 
of trends are used by the Committee on the Status of 
Endangered Wildlife in Canada (COSEWIC) to inform 
decisions as to whether species should be added or 

removed from the list of species at risk [14]. The models 
and modelling frameworks used to produce estimates 
from the BBS are continually evolving [10, 15, 16, 17]. 
Currently, these trend and trajectory estimates are 
generated using a hierarchical Bayesian, over-dispersed 
Poisson regression model that accounts for variation 
among and within observers, routes, and geo-political 
strata [10, 16, 17]. 

The CWS and USGS jointly manage the BBS data and 
publish the entire data set each year in an accessible online 
format [18]. However, the detailed model structures and 
computer code necessary to replicate these estimates 
are not nearly as accessible. Although the models have 
been described in the literature, there does not yet exist 
a streamlined method for a researcher to download the 
entire data set and replicate the estimates of trends and 
trajectories, or to customize the standard hierarchical 
Bayesian models for a species of interest. Additionally, the 
process of properly subsetting and preparing the raw BBS 
data for modelling (for example, properly distinguishing 
zero-counts and missing data) may be a daunting task to 
a researcher who may not have much experience using 
Bayesian models or using the BBS data.

The R package bbsBayes was developed to address 
these issues: to provide a clear and open workflow within 
which a user could replicate the agency-based analyses 
of trends and trajectories and to customize the standard 
models for specific research questions. bbsBayes is 
an R package that contains the standard BBS models 
and tools to download and prepare the raw data, and 
functions that can help researchers customize their own 
analyses using hierarchical Bayesian models. In this 
paper, we detail the development of the package itself, 
as well as the data prepping, modelling, and subsequent 
summaries and visualisations that can be performed with 
bbsBayes. Using the functionality described, we provide a 
worked example of a full analysis run on Wood Thrush 
(Hylocichla mustelina), a near-threatened and declining 
passerine bird that breeds across much of Eastern North 
America [19].

1.2 IMPLEMENTATION AND ARCHITECTURE
bbsBayes seeks to mirror the typical workflow of BBS 
data analysis for a given species. As such, the package 
provides functionality for 4 main processes:

1.	 Data import
2.	 Data preparation
3.	 Markov chain Monte Carlo (MCMC) simulation
4.	 Model summary

The user has access to functionality under all four 
processes to analyse data as needed for their research. 
The following subsections detail the implementation of 
each of these processes and describe the functionality 
available to the user from each process. We will also give 
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a brief discussion on how to modify the models to add 
covariates, change priors, etc. A summary of this typical 
workflow can be found in Figure 1.

1.2.1 Data Import
When the package is first installed, the user must 
download the data from the USGS, which can be 
accomplished within the bbsBayes package using 
the fetch_bbs_data() function. When called, this 
function downloads raw BBS data from the USGS’s data 
repository website ScienceBase (https://www.sciencebase.

gov/catalog/) using functions from the sbtools package 
[20] and saves it to an application directory on disk. Note 
that this function must be run to make the raw data 
accessible to bbsBayes, and it should be rerun to update 
the local copy of the data after the release of the annual 
data sets.

The user can optionally bring the raw, unstratified data 
into R, using the function load_bbs_data()however it is 
not necessary. Calling the load_bbs_data()creates a list 
of three data frames: route, bird, and species. These 
raw BBS data are well documented by the USGS [18], 
and most users need not directly interact with them, 
so below we highlight the key variables that are used in 
data preparation and simulation.

1.2.1.1 Route Data
The route data frame contains over 116,000 rows across 
32 variables, and provides the location of each route 
and information on each unique sampling event: i.e., the 
survey conducted on each route in each year. Each row 
in route corresponds to route information per year, such 
that route x run in year y will have its own row unique from 
route x run in year y+1. Each route has corresponding 

Figure 1 Flowchart of the typical workflow of generating status and trend estimates using bbsBayes for any species of North 
American bird covered by the North American Breeding Bird Survey. 

https://www.sciencebase.gov/catalog/
https://www.sciencebase.gov/catalog/
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locational data with it, such as state/province, country, 
latitude/longitude, and Bird Conservation Region (BCR, 
[21]) number. 

Each route is uniquely identified based on the political 
jurisdiction (state, province or territory) in which it is 
located (hereafter “state”), plus a unique numerical 
identifier that is nested within state. Each route is also 
designated a unique text-based name, usually referring 
to the general location of the route, however the package 
does not directly rely on the text name. The combination 
of state, route number, and year, provides a unique 
identifier for each sampling event. 

Each entry in route also contains information about 
the weather conditions during the survey, the date and 
time the survey was conducted, and a unique numerical 
identifier for the observer who conducted the survey. 
The observer identifiers are used in the models. The 
date, time and weather data are not explicitly used 
in the modelling, however they are used to identify 
which observations meet the acceptable conditions for 
inclusion in the models. All sampling events that are 
included in the models are identified with the value 1, in 
column titled “RunType”. 

1.2.1.2 Bird Data
The bird data frame contains over 6,500,000 rows 
across 15 variables, and provide counts of species by 
route. Each row of the bird data frame corresponds to 
the number of individuals observed of a given species on 
a given route, in a given year. For example, the number 
of mallards observed on route x in year y will be its own 
row separate from the number of mallards observed on 
route x in year y+1. Similarly, if 50 species were observed 
on route x in year y, then 50 separate rows will exist with 
count data for each species on route x in year y. Note: this 
data frame does not include zero counts; if a species is 
not observed on a given route, in a given year, there will 
be no record of it in this file, even if that species has been 
observed on that route in other years.

The route variable in the bird data frame corresponds 
to the numerical representation of the route as described 
in 1.2.1.1. Additionally, each entry in bird is assigned 
general locational information, such as state/province, 
country, and Bird Conservation Region (BCR) number. 
Indeed, the combination of route number, state, and 
year can be used to cross reference species count data to 
the route data contained in the route data frame.

1.2.1.3 Species Data
The species data frame contains 756 entries across 10 
variables, and provides a list of all North American bird 
species in their English, French, and Spanish names, their 
taxonomic classifications, and a unique numeric code 
originally assigned by the American Ornithological Union 
(AOU; now the American Ornithological Society, AOS). 
Users should familiarize themselves with the taxonomic 

groupings in the BBS database [22], as some taxonomic 
revisions made since the start of the surveys require 
careful treatment of the historical data. For example, it 
is not possible to retroactively assign all observations of 
Traill’s Flycatcher made before the species was split into 
the two separate species, Alder and Willow Flycatcher 
[22]. 

1.2.2 Data Preparation
Data preparation functions are provided for functionality 
to prepare raw BBS data into data used as input for 
modelling. As such, data preparation is heavily dependent 
on what analyses the user is looking to perform.

1.2.2.1 Stratification
All of the models available in bbsBayes require a 
stratification to estimate trends and trajectories for 
different geographical areas of North America. There are 
a number of stratification options within the package, all 
of which are based on distinct geographic regions. The 
function stratify() is used to create an intermediate 
bird and route data frame that contain references to 
the geographic stratum-allocation for each data point. 
There are two ways to use the function. In the first way, 
the user can load raw BBS data into the R session using 
the load_bbs_data() function and save it to a variable. 
This variable would then be passed into the stratify() 
function with the bbs_data argument. This approach 
would be most useful if an advanced user wished to make 
some modification to the dataset to suit a customized 
model or a custom subset of the data.

However, since fetch_bbs_data() saves raw BBS 
data directly to the user’s disk, functions from bbsBayes 
can therefore access this data. Indeed, the less memory-
intensive and recommended way to use the stratify() 
function is to simply not provide any input data to the 
function; the function will access the raw data from the 
user’s disk, stratify the data, and return the stratified 
data as a large list.

To specify how the data should be stratified, the user 
provides a string to the by argument, which can be given 
5 possible options:

1)	“latlong” – Stratify by degree blocks (i.e. 1 degree of 
latitude by 1 degree of longitude, the sampling strata 
with which the BBS routes are defined)

2)	“state” – political jurisdictions only (i.e. by province, 
state, and territory)

3)	“bcr” – Bird Conservation Region (BCR) only
4)	“bbs_usgs” – Intersection of political jurisdictions and 

BCR (USGS method)
5)	“bbs_cws” – Intersection of political jurisdictions and 

BCR (CWS method)

Figure 2 illustrates each of these stratification options on 
maps of North America.
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In current hierarchical Bayesian analyses of BBS data, 
option 4 (“bbs_usgs”) or option 5 (“bbs_cws”) are typically 
used. The USGS and CWS methods of these intersections 
vary slightly. In both, the strata are defined by the 
intersection of political borders (i.e. state, provincial, and 
territorial borders) and BCR borders. For example, for a 
route located in Toronto, Ontario, Canada, the political 
boundary is specified by the province of Ontario, and 
the BCR boundary is specified by BCR 13: Lower Great 
Lakes/St. Lawrence Plain, so all counts conducted in 
this intersection would be assigned to the stratum 

“Ontario-BCR13”. The CWS stratification is identical, 
except for two small modifications: 1) The provinces of 
Prince Edward Island (PEI) and Nova Scotia are treated 
as a single province, because PEI is so small that it only 
contains 4 BBS routes and therefore often fails to meet 
the minimum data criteria [16]; 2) The entirety of BCR 7: 
Taiga Shield and Hudson Plains is treated as one stratum, 
because this large portion of Canada’s Boreal forest 
contains a large portion of many species’ populations but 
it includes very few routes and would often be excluded 
from analyses if separated by province/territory [14].

Figure 2 Maps of the 5 stratification options offered by bbsBayes. A user can specify to stratify by degree blocks (a), state (b), Bird 
Conservation Region (BCR; c), BCR × state (USGS method; d), or BCR × state (CWS method; e).
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The stratify() function returns a large list that 
contains modified versions of the bird and route data 
frame that contain references to their strata. Each of 
the bird and route data frame gain a unique identifier 
for each entry that is a combination of the state, route, 
and year (as mentioned in 1.2.1). If the user selected 
to stratify using the CWS method of BCR and state 
intersection, both the route and bird data frames will 
be modified to reflect the combined provinces of PEI and 
Nova Scotia and the combined routes for BCR 7.

1.2.2.2 Data Preparation
The function prepare_data() creates the species-
specific data used for fitting the model. The models 
supplied by bbsBayes can only be used for one species at 
a time, so this function must be called separately for each 
species to be modelled. This function provides the user 
with options to select the species to model (by setting 
the species argument), as well as data exclusion criteria 
(e.g., minimum number of routes in a stratum with the 
species present) and options for model-specific required 
data (e.g., the distribution used to model overdispersion).

prepare_data() uses the stratified data set created 
by stratify(). The function starts by subsetting the bird 
data frame, keeping only observations of the specified 
species. This subset of data is then merged with the 
route data frame. As mentioned in 1.2.1, the bird data 
frame and route data frame both contain references 
to the state/province and BCR the data were recorded 
in (i.e. what state/province and BCR the route is in), the 
year for each route run, and a numerical representation 
of the route itself. Therefore, these two data frames can 
be merged by these 4 variables. 

The merging of these two data frames serves 
two purposes. For one, since the strata information 
is contained in the route data frame (among other 
qualitative data about the route), merging these two 
data frames now allows for a stratum reference for the 
species of interest, and allows a reference for qualitative 
route data as possible covariates for the species count. 
Additionally, merging these two data frames adds the 
zero-counts to the data. Because the list of species 
not observed on any given route x year combination is 
extremely long, zero-counts are not explicitly stored 
in the BBS data set: an entry for species s on route x in 
year y will appear in the bird data frame only if it was 
actually observed. This creates the case where if species 
s was only observed for 10 out of the 50 years that route 
x has been run, there are implied yet missing data points 
that shows 0 count for the remaining 40 years. With this 
merge, we ensure that all the years a given route was run 
appear in the merged data frame, even if the species was 
not observed in a particular year.

prepare_data() provides a number of arguments for 
the user to exclude data from the analysis that do not 
meet a threshold. These are:

•	 min_year: Set the minimum year to keep in the 
analysis

•	 max_year: Set the maximum year to keep in the 
analysis

•	 min_n_routes: specify the minimum number of 
routes with non-zero observations of the species in a 
stratum

•	 min_max_route_years: specify the minimum of 
the maximum number of years with non-zero 
observations of the species on each route in a 
stratum

•	 min_mean_route_years: specify the minimum of the 
mean number of years with non-zero observations of 
the species on the routes in a stratum

•	 strata_rem: specify specific stratum or strata to 
remove from the analysis

The authors of bbsBayes have set defaults for these 
variables based on what is done for analyses performed 
by CWS [10].

bbsBayes incorporates four Bayesian models into the 
package. When the user calls prepare_data(), they 
will need to specify for which model the data will be 
prepared using the model argument. As of this version 
(additional models will be added in the future), there 
are 4 model options, reflecting 4 different approaches to 
modelling the temporal patterns of population change 
(Table 1). Each of the models have the following same 
basic structure:

( ) ( ) [ ], , , ,log Δ ,s ss j t j s j tt j tl q h w e= + + I + +

where each count in geographic stratum s by obsever 
j in year t is treated as a Poisson random variable with 
mean λs,j,t, with log-linear functions of stratum-specific 
intercepts θs, observer-route effects (ωj), first-year startup 
effects for a given observer (ηI[j,t]), and a count-level 
random effect to model overdispersion (εs,j,t). Variations 
among and within observers on the probability of 
detection of each species are modeled using the random 
effects of observers and the first-year startup effects, 
and controlled by the field protocol that limits changes 
in observers within each route. Variations in detectability 
are also controlled by the field protocol that strictly 
limits any variation in time of day, weather conditions, 
or season [3]. The models vary in their temporal 
components, estimated using a function of year (∆s(t), 
see Table 1). Priors are set following [17] and [23]. For 
each model, the user can also specify whether the 
extra-Poisson error distribution should be modelled as a 
normal distribution or a heavy-tailed t-distribution [10, 
17], the latter of which is accomplished by setting heavy_
tailed = TRUE. For users that simply want to replicate 
the status and trend results of the 2019-data version 
of the CWS analysis, the GAMYE model should be used. 
To replicate the 2019-data version of the USGS analysis, 
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depending on the species, either the Slope model or the 
First Difference model should be used. 

The Slope model is effectively a regression model 
that uses a slope parameter and annual fluctuations 
to model population change, sharing information 
among strata on the slope parameter [14, 16]. The 
GAM and GAMYE models use a Generalized Additive 
Model to smooth population trajectories and the 
GAMYE version includes year-effects to model annual 
fluctuations around the smooth. These two models 
also share information among strata on the pattern 
of population change [10]. The First Difference model 
uses a random-walk time-series approach to model 
the first-order differences between subsequent years 
to model the changes in population within a stratum 
[17]. In contrast to the other three models, the First 
Difference does not share information among strata on 
the pattern or rate of population change, but instead 
estimates changes in each stratum independently 
of other regions in the species’ range. In general, 
the choice of which model to use is a complicated 
decision that goes far beyond the scope of this paper. 
We encourage users to carefully consider the ongoing 
discussions of model selection for the BBS in the 
literature [3, 10, 17]. 

The generalized additive model (GAM) and GAM year 
effect (GAMYE) require a basis function with n number of 
knots [24]. The user can specify the number of knots to be 

used with the n_knots argument, but prepare_data() 
will default to [ 4

Y ], rounded to the nearest integer, where 
Y is the total number of years.

In all four models, the data list returned by prepare_
data() will contain the number of counts, number of 
strata used, the area-weight of each stratum, minimum 
and maximum years, the count data per route per 
year, the stratum for each count, the observer-route 
combination for each count, the year for each count, the 
number of observers for each count, and an indicator 
variable of whether it was the observer’s first year of 
counting. If the user chooses the slope model, a fixed 
year, which is simply the median of all the years, is 
added into the list. If the user chooses the GAM or GAMYE 
models, the basis function matrix will be returned in this 
list.

prepare_data() includes an additional sampler 
argument, which is currently set to sampler = “jags” by 
default. As of this version of the package, bbsBayes only 
has capability for modelling using the JAGS sampling 
software [25]. However, future versions will include the 
ability to use models written in Stan, a more efficient 
MCMC sampler that uses Hamiltonian Monte Carlo 
sampling [26]. 

1.2.3 MCMC Simulation
MCMC simulation with JAGS is accomplished using 
functionality from the jagsUI package [27]. The function 

MODEL TEMPORAL PARAMETERS DESCRIPTION REFERENCE

Slope

model = “slope”
Random-effect log-linear slopes (overall 
long-term rate of population change) with 
random year-effect deviations (yearly 
fluctuations around the overall long-term 
slope). 

Based on the model used by the CWS and 
USGS since 2011, but with slopes and 
intercepts fit as random effects, so that 
slopes and intercepts for data-sparse strata 
are shrunk towards the survey-wide means. 

[16]

First-difference

model = “firstdiff”
Year-effects follow a random walk, where 
for each stratum, the differences between 
year-t and year-t-1 is a zero-mean normal 
distribution with an estimated variance. 

Based on the first-difference model 
described in Link and Sauer 2020. [33] The 
year-effects are shrunk towards the value 
in the previous year, so that the long-term 
trajectory is relatively flexible (e.g., can 
follow cyclical population patterns well) but 
annual fluctuations are dampened.

[17]

GAM

model = “gam”
Year-effects follow a penalized thin-
plate spline (i.e., a GAM smooth), with a 
number of knots chosen by the user. The 
parameters linking the basis function 
to the yearly values are estimated as 
random effects, centred on a survey-wide 
mean, so that the shape of the trajectory 
in a data-sparse stratum is shrunk 
towards a survey-wide mean trajectory.

GAM basis structure based on Crainiceanu 
et al. 2005. [24] For a number of knots, 
similar to the defaults (0.25 * number 
of years), the estimated trajectories are 
relatively smooth in the short-term (i.e., 
show no annual fluctuations) but are quite 
flexible over the long- and medium-term 
(e.g., population cycles on a 3-10 year 
period and change points in medium-term 
trends are modelled well).

[10]

GAMYE

model = “gamye”
Combines the GAM components of the 
above model with the random year-
effects of the slope model.

Trajectories are quite flexible over the long- 
and medium-term (e.g., population cycles 
on a 3–10 year period and change points 
in medium-term trends are modelled well), 
and include yearly fluctuations around the 
smoothed trajectory.

[10]

Table 1 Comparison of the 4 models provided by bbsBayes.

https://doi.org/10.5334/jors.329
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run_model() acts as a wrapper for creating, adapting, 
and sampling from the model. 

For simplicity, run_model() provides a variety of 
defaults: the only required argument to the function is 
the list of data produced by prepare_data(). The model 
to be run is extracted from that list. run_model(), by 
default, will run a model with 3 chains, 20000 burn-in 
steps per chain, 10000 sampling iterations per chain. 
The model will thin each chain by 10 steps and will 
save a total of 2000 steps per model run. No specific 
initialization values are supplied. The function defaults to 
only tracking the derived parameter n (i.e., the trajectories 
of stratum-level annual indices of abundance), which is 
necessary for later trend analysis. bbsBayes offers a total 
of four possible ways to calculate this annual index of 
abundance:

1.	 n: Index of abundance as used in [14]. If the GAMYE 
model is chosen, this index includes the added 
random year effects.

2.	 n2: Index of abundance as used in [16]. If the GAMYE 
model is chosen, this index includes the added 
random year effects.

3.	 n3: Same index as n; however, does not include the 
random year effects if the GAMYE model is chosen 
(i.e., this is just the smooth component of the 
trajectory).

4.	 n4: Same index as n2; however, does not include the 
random year effects if the GAMYE model is chosen (i.e., 
this is just the smooth component of the trajectory).

By tracking both n and n3 (or n2 and n4), the user can 
decompose the GAMYE into a trajectory with random year 
effects and a trajectory that is just the GAM smooth [10, 
28]. The differences between n and n2 or n3 and n4 are 
often small. Conceptually, n and n3 estimate the mean 
expected counts from among the existing collection 
of observer-route combinations in a given stratum, 
whereas n2 and n4 represent the mean expected count 
from a hypothetical new observer-route combination 
somewhere in the species’ range [10].

The user has the option to provide their own values for 
any of the model parameters mentioned above. When 
running models in JAGS, advanced users may specify 
a character vector of JAGS modules to load before 
analysis. By default, no extra modules are loaded (other 
than “basemod” and “bugs”). To force “glm” or other 
modules to load, use modules = “glm”. The authors 
note, however, that including the “glm” module may 
cause problems with the BBS data and models.

The MCMC simulation is, by far, the most time 
consuming and computationally expensive process in the 
analysis of BBS data, with model runs of data rich species 
(such as Barn Swallow, Mourning Dove, or American 
Robin), and particularly with more complicated models 
(e.g., GAMYE), taking 72 hours or more to complete. If 

the user has more than 1 processor core available, the 
user may specify the argument parallel = TRUE to run 
one chain per processor to cut down significantly on this 
processing time. Users should pay close attention to the 
system requirements outlined in section 2.3.

1.2.4 Model Summary
A number of model summary and visualization tools are 
available from bbsBayes to allow the user to generate 
meaningful metrics given the simulated posterior 
generated by run_model(). 

1.2.4.1 Convergence
In this package, we use Gelman and Rubin’s R̂ (“R-hat”) 
statistic, also known as potential scale reduction factor 
(PSRF), to assess convergence [29]. R-hat is a ratio of 
the posterior variance estimates for the pooled traces 
of the parameter and the within-chain variance. When 
converged, both variance estimates will be equal, giving 
an R-hat value of 1. Values of R-hat greater than 1 imply 
that some chains may not have converged, and more 
sampling may be necessary [29].

The run_model() function will send a warning if 
R̂ > 1.1 for any of the monitored parameters. From 
here, the user should decide as to how to proceed with 
model summary. To possibly improve convergence, one 
may consider taking more samples from the posterior; 
bbsBayes provides a get_final_values() function that 
will return the final values of a model which can be used 
as initial values to a new call to run_model(), avoiding 
the need to wait for an additional burn-in period (see 1.3 
Worked Example: Wood Thrush).

However, the seriousness of a convergence failure 
is something the user must interpret for themselves. 
In some cases, some parameters of the model may 
not be separately estimable, but if there is no direct 
inference drawn from those separate parameters, their 
convergence may not be necessary. If all or almost all of 
the n parameters have converged (e.g., the user receives 
a warning message for other monitored parameters), 
then inference on population trajectories and trends 
from the model are reliable.

1.2.4.2 Generating Indices and Trends
Given the model output by run_model() and the prepared 
data output by prepare_data(), the function generate_
indices()will output a data frame of strata-weighted 
indices as well as a vector of quantiles sampled from the 
posterior (to be used for plotting credible intervals about 
a trajectory). By default, the function will output indices 
for the continent (survey-wide) and for individual strata. 
However, the user can set the regions argument to 
output indices for composite regions such as countries, 
provinces and states, Bird Conservation Regions, etc.

Once the annual indices of abundance are calculated, 
they can be used to generate population trends. In 
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bbsBayes, and in analyses performed by CWS and USGS, 
the trends are calculated as the geometric mean rates 
of change (%/year) between two points in time [2]. This 
calculation is performed using the generate_trends() 
function, which can simply take the indices generated 
previously as input. The user can also specify a minimum 
year and maximum year for which to generate trends 
(by setting the min_year and max_year argument, 
respectively). The function will return a data frame with 1 
row for each unit of the region types that were requested 
in the generate_indices() call (i.e., 1 row per stratum, 
1 for continental, 1 per any other region selected). 
Additionally, the data frame contains other information 
related to each trend, including the start and end year of 
the trend, lists of included strata, total number of routes 
used, among others.

generate_trends() also allows for an alternative 
trend calculation. As mentioned, the default trend 
calculation is to calculate the geometric mean annual 
change in population between the start and end years. 
However, by setting the argument slope = TRUE, the 
function will also fit a log-linear slope to the series of all 
annual indices between the two end points. For some 
models that contain strong annual fluctuations for 
which no decomposition is possible (for example, the 
first difference model), the slope trend may be a better 
measure of average population change, as it integrates 
the pattern of change between the two end points.

Finally, generate_trends() provides functionality 
for the user to make statements about percent change 
and the probability of change for a given species. This 
is accomplished by setting the prob_decrease and/or 
prob_increase arguments with a vector of probabilities 
(i.e., a vector of numbers between 0 and 100, inclusive). 
Then, the function will output (for each row in the data 
frame) the probability of that change. For example, if 
the user set prob_increase = c(0,100), then the data 
frame will contain columns related to the probability of 
the species increasing (that is, a > 0% increase over the 
time period) and the probability of the species increasing 
more than 2-fold (that is, a > 100% increase over the 
time period). Section 1.3 will cover this in more detail.

1.2.4.3 Model Visualizations
With any modelling of large data sets, and especially 
when talking about an increasing or decreasing 
population of an animal species in its habitat, it is crucial 
to have clear and easy-to-interpret visualizations of what 
the model produces for indices and trends. 

bbsBayes comes with a variety of functions to visualize 
the indices and trends produced by the model. The plot_
indices() function is used to create a time series of 
the indices for each region specified in the initial call to 
generate_indices().  That is, given the data frame of 
indices, plot_indices() will return a list of plots (created 
with ggplot2 [30]), one per stratum, one continent-wide, 

and one for each additional region specified. The user has 
a variety of additional visual options for the trajectory 
plots: they can set add_observed_means = TRUE to 
overlay the observed mean counts for each year, they 
can set add_number_routes = TRUE to superimpose a 
dotplot of the number of BBS routes included for each 
year, they can change the minimum and maximum 
year to plot by setting the min_year and/or max_year 
arguments, or they can change the sizes of axes, title, 
text, etc. The plot_indices()function returns a ggplot2 
object, allowing for the user to further customize their 
plot using the ggplot2 library. 

These trajectories can also be visualized on a geofacet 
plot using the geofacet_plot() function, which is a 
graphic that plots the state/province level population 
trajectories in facets arranged approximately in a 
geographical arrangement [31]. Again, this function 
simply takes in the indices generated by generate_
indices(). This plotting can only be accomplished if 
the data was stratified by one of “state”, “bbs_cws”, or 
“bbs_usgs”.

Finally, the stratum-specific trends created by 
generate_trends() can be mapped out using the 
generate_map() function which creates a stratified 
continental heat map.

1.2.5 Modifying Models
Often with Bayesian models, new research is published 
that lead to more informative or useful priors on 
estimated parameters. Or, researchers may be interested 
in parameterizing an already-existing model differently 
to experiment with model selection. It therefore makes 
sense that the models supplied with bbsBayes should 
be reasonably simple to customize, and that the 
customized model files can easily be used with the rest 
of the functions of bbsBayes.

Indeed, the function model_to_file() allows the 
user to save the model files supplied by bbsBayes as 
plain text files. Suppose the user wanted to save the 
slope model file to disk. They could use this function 
setting the arguments model = “slope” and filename 
= “slope_model.txt”, saving the model file to the 
current working directory as a file called “slope_model.
txt”. The user could then customize some portion of 
the model (e.g. changing priors) and rename the file to 
“slope_model_modified.txt”. The user could then run the 
custom model by setting the model_file_path argument 
in run_model() as model_file_path = “slope_model_
modified.txt”.

1.3 WORKED EXAMPLE: WOOD THRUSH
We will now provide an example of using bbsBayes 
to generate a meaningful quantitative analysis of 
Wood Thrush trends over the time period of the BBS 
data collection. The Wood Thrush is a medium-sized 
neotropical migrant that occurs in eastern North America 
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during its breeding season. Since the late 1970s, habitat 
destruction in both wintering and breeding grounds have 
contributed to a severe loss of abundance in this species 
[19]. BBS data on Wood Thrush is reasonably data rich, 
so it makes it a good species to model and pick up these 
trends over time. The script for this example, as well as 
the prepared data generated from prepare_data() 
and the model output generated from run_model() is 
available at https://github.com/BrandonEdwards/bbsBayes-

Wood-Thrush-Worked-Example.

1.3.1 Data Fetching, Preparation, and Modelling
We start with calling the bbsBayes library, then making 
a call to download the BBS data from the USGS data 
repository. As mentioned, this step is required for the first 
use of bbsBayes, and should only be used once each year 
as USGS releases updated data sets.

# Use bbsBayes library
library(bbsBayes)

# Download the data (requires internet connection)
fetch_bbs_data()

When fetch_bbs_data() is called, the user must agree 
to the terms and conditions (see https://www.pwrc.usgs.

gov/BBS/RawData/) of the data usage by typing “yes” in 
the console. Otherwise, the data will not be downloaded. 
These terms and conditions overview some best 
practices for using BBS data, point the user to review the 
metadata for the BBS data, and encourage the user to 
involve BBS staff in their analyses where needed. Once 
downloaded, the BBS data is saved on disk to a package-
specific directory that can be accessed by functions of 
bbsBayes. 

Now that we have the raw data downloaded to disk, 
we can bring the data into R and stratify it. The function 
stratify() will accomplish both these tasks. For this 
worked example, we choose to stratify by the state X BCR 
intersections (CWS method), thus our argument for by 
will be the string “bbs_cws”. We recommend assigning 
the string “bbs_cws” (or which ever stratification the user 
is choosing) to a variable as it will eventually be used 
later in the analysis.

# Stratify the data
s <- “bbs_cws”
stratified_data <- stratify(by = s)

The variable stratified_data contains the stratified data 
which can now be prepared for use in modelling. In this 
example, we will model Wood Thrush counts using the 
hierarchical Bayesian generalized additive model with 
year effects, requiring the string “gamye” to be passed as 
an argument. Additionally, we must now specify which 
species to subset and prepare for modelling. As previously 
mentioned, the version included in this manuscript only 
allows the use of JAGS for sampling; for posterity, we are 

setting the sampler = “jags” argument to explicitly 
show that this example is using the JAGS sampler, and 
future versions will allow the use of Stan models.

# Prep the data for JAGS modelling
jags_data <- prepare_data(strat_data = bbs_strat,

species_to_run = “Wood 
Thrush”,
model = “gamye”,
sampler = “jags”)

We are now ready to run the model. As mentioned, this 
will typically end up being the most time- and memory-
consuming process in an analysis, so we recommend 
that the user pay close attention to 2.3 Additional system 
requirements before running any models. As mentioned, 
the prepared data and model output for this worked 
example have been made available at https://github.com/

BrandonEdwards/bbsBayes-Wood-Thrush-Worked-Example, for 
readers that may want to skip over this step and try out 
the model summary and visualization features.

We could simply run the following code to run a model 
with default settings:

jags_mod <- run_model(jags_data = jags_data)

However, for this example, we will modify a number of 
default settings for the model. Here, we will run the model 
with 1000 adaptation steps, 10,000 burn-in iterations, 
saving 1000 steps, 3 MCMC chains, and thinning each 
chain by a factor of 10. By not specifying the number 
of iterations, we run the model with the default 10,000 
iterations. We will also give run_model() a list of other 
parameters to track. Here, we will track the parameters 
n, n3 taunoise, strata, B.X, and beta.X. By 
default, run_model() will always track the parameter n, 
no matter what other parameters are specified (even if n 
is not explicitly specified), as this parameter is needed to 
calculate annual indices and trends later in the analysis. 
In this case, we also track n3, which we could later used 
to decompose the trajectory into both the GAM smooth 
trajectory and GAM smooth with yearly fluctuations.

# Run JAGS
jags_mod <- run_model(jags_data = jags_data,

n_adapt = 1000,
n_saved_steps = 1000,
n_burnin = 10000,
n_chains = 3,
n_thin = 10,
parallel = FALSE,
parameters_ 
to_save = c(“n”,

“n3”,
“taunoise”, 
“strata”, 
“B.X”,
“beta.X”))

https://github.com/BrandonEdwards/bbsBayes-Wood-Thrush-Worked-Example
https://github.com/BrandonEdwards/bbsBayes-Wood-Thrush-Worked-Example
https://www.pwrc.usgs.gov/BBS/RawData/
https://www.pwrc.usgs.gov/BBS/RawData/
https://github.com/BrandonEdwards/bbsBayes-Wood-Thrush-Worked-Example
https://github.com/BrandonEdwards/bbsBayes-Wood-Thrush-Worked-Example
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Depending on what species is being modelled and what 
model is being used, this step in the analysis process 
can take up to a few days to run on a single processer. 
If multiple processor cores are available on the user’s 
computer, this processing time can be reduced with 
the argument parallel = TRUE, where each MCMC 
chain will be run on a separate core. The user could also 
consider taking advantage of one of the several cloud 
computing options that are available to further reduce 
computational time by running several species in parallel 
on multiple cores.

1.3.2 Model summary and Visualizations
When the model is complete, the run_model() function 
will send a warning if any of the tracked parameters have 
an R̂ > 1.1. When the authors ran this worked example, 
convergence warnings were issued for only one n value 
and two n3 values; the remaining convergence warnings 
were for other parameters. As mentioned before, if all or 
most of the n values are converged, then that is sufficient 
for generating indices and trend estimates. In any case, 
if the user were wanting to run the model for more 
iterations in an attempt to improve convergence, they 
can make use of the extract_final_values(jags_mod = 
jags_mod) function and use these values as initial values 
for a new model.

Once the user is happy with convergence, indices 
and trends can be calculated. For this example, our goal 
is to use bbsBayes to create 4 figures: 1) a plot of the 
continental annual indices of abundance with observed 
means for Wood Thrush between 1966 and 2019, 2) a 
2-panel plot of the national annual indices for Canada and 
US, 3) a geofacet plot, and 4) a heat map of population 
trends for Wood Thrush from 2009 – 2019 (i.e., a 10-year 

trend) for each stratum. We would also like to make a 
statement regarding the probability that the species has 
declined across its range by 0% (i.e., any decrease at all), 
by 50%, and by 100% from 2009 – 2019.

Let us begin by generating the indices of abundance 
for the continental, national, and stratum levels.

# Generate indices at the continental, national, 
and stratum level
indices <- generate_indices(jags_mod = jags_mod,

jags_data = jags_
data,
regions = 
c(“continental”,

“national”,
“stratum”))

Already, we can generate the first two figures that we 
specified above. Let us first create the list of trajectory 
plots with observed means. We will also specify some 
different sizing for titles and axes:

# Create a list of trajectory plots, with 
observed means
plot_list <- plot_indices(indices_list = indices,

species = “Wood Thrush”,
add_observed_means = 
TRUE,
title_size = 18,
axis_title_size = 14,
axis_text_size = 12)

We can then access the continental plot list with plot_
list$Continental. The resulting plot is shown in Figure 3.

Generating the 2-panel plot of the national indices 
requires slightly more work and requires the use of the 

Figure 3 Plot of continental annual index of abundance for Wood Thrush from 1966 to 2019 with 95% credible band and observed 

means (grey dots). This plot was generated using the plot_indices() function.
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library gridExtra [32]. For the national trends, we can access 
the Canada and US plot with plot_list$Canada and 
plot_list$United_States_of_America, respectively. 
Thus, by using the grid.arrange() function from 
gridExtra, we can generate a 2-panel national trajectory 
plot with

library(gridExtra)
grid.arrange(plot_list$Canada,

plot_list$United_States_of_America,
nrow = 2, ncol = 1)

which can be seen in Figure 4. 
To create the geofacet plot given the stratification we 

used (recall we set s = “bbs_cws”), we can run

geofacet_plot(indices_list = indices,
stratify_by = s,
select = TRUE,
multiple = TRUE,
species = “Wood Thrush”)

In this case, we must set select = TRUE to indicate that 
the function must select the stratum-level data out of a 
data frame that contains other region types; in our case, 
our indices data frame contains indices at the stratum 
level, national level, and continental level. Additionally, 
we must set multiple = TRUE to indicate that each 
province/state facet may be made up of multiple strata-
level trajectories that must be combined. The resulting 
figure can be seen in Figure 5.

Figure 4 Plots of national annual indices of abundance for Wood Thrush from 1966 to 2019 for Canada and USA. These plots were 

generated using the plot_indices() function.
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Shifting gears slightly, let us now do some analysis of 
trends. As mentioned, we want to create a heat map of 
the trend by each stratum, and make some quantitative 
statements about the trends. First, we will generate the 
trends from 2009 to 2019

trends <- generate_trends(indices = indices,
Min_year = 2009,
Max_year = 2019,
prob_decrease = c(0, 
50, 100))

Right away, we can generate a heat map of the trends 
for each stratum over this 10-year period with

generate_map(trend = trends,
select = TRUE,
stratify_by = s,
species = “Wood Thrush”,
col_viridis = TRUE)

Similar to the geofacet plot, we must set select = 
TRUE to specify that we are providing a data frame that 
contains trends for more than just the stratum regions, 
and we must also set stratify_by = s to indicate the 
original stratification used. bbsBayes offers two different 
colour palettes that are both colourblind-friendly; for this 
example, we have opted to use colours from the viridis 
palette [33] by setting the argument col_viridis = 
TRUE. The resulting figure is seen in Figure 6.

When we generated the trends, we have also specified 
prob_decrease = c(0, 50, 100); our trends data frame 
will therefore contain the posterior probabilities that Wood 
Thrush has decreased by at least 0%, by at least 50%, and by 

at least 100% for this 10 year period for each region initially 
specified. Table 2 summarizes these percent changes and 
probabilities of change for the continent, Canada, USA, 
and four select strata. With these data, we can make a 
statement such as “our model shows a 97% probability 
of any population decrease at in Canada”, or “our model 
shows a 100% probability of the population decreasing by 
50% in the US-SC-27 (South Carolina × BCR 27) stratum”.

1.4 QUALITY CONTROL 
The original code of bbsBayes, prior to being used in 
this package, has been continuously developed and 
used for several years to provide yearly trend estimates 
of BBS data [10, 16, 17]. bbsBayes also underwent 6 
months of beta testing where users could submit bugs or 
suggestions through GitHub issues. 

The R package testthat [34] was used in a test harness 
for data fetching. Finally, 1.3 provides a worked example 
that a user can work through to ensure the package is 
functioning correctly.

A small amount of sample data is provided for the users 
to test the toy examples given in the documentation.

The authors of the package will continue to review 
bug fixes and suggested changes made in pull requests 
to the Github repository.

(2) AVAILABILITY 
2.1 OPERATING SYSTEM
Any system that can run R (obtained from https://www.r-

project.org/) and JAGS (obtained from http://mcmc-jags.

sourceforge.net/). 

Figure 5 Geofacet plot of Wood Thrush trajectories for each province, state, and territory, created using the plot_geofacet() 
function. Each line within a state represents the trend (and 95% credible interval) for each BCR within the state.

https://www.r-project.org/
https://www.r-project.org/
http://mcmc-jags.sourceforge.net/
http://mcmc-jags.sourceforge.net/
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2.2 PROGRAMMING LANGUAGE
R version 2.10 or higher. JAGS version 4.3.0.

2.3 ADDITIONAL SYSTEM REQUIREMENTS
An internet connection is required to install the bbsBayes 
package, to install JAGS, and to download the BBS 
data. Since the BBS data is extremely data rich, it is 
recommended to have 8 GB or more of RAM to handle the 
large process created by the model for a given species. 

2.4 DEPENDENCIES
R package: progress [35], jagsUI [27], ggrepel [36], 
geofacet [31], ggplot2 [30], stringr [37], grDevices [38], 

rgdal [39], dplyr [40], sf [41], tools [38], latticeExtra [42], 
rappdirs [43], sbtools [20].

2.5 LIST OF CONTRIBUTORS
This package was created by Adam C. Smith and Brandon 
P.M. Edwards.

2.6 SOFTWARE LOCATION
Archive (e.g. institutional repository, general repository) 
(required – please see instructions on journal website 
for depositing archive copy of software in a suitable 
repository) 

Name: CRAN

Figure 6 Heat map of Wood Thrush trends for each stratum for the 10-year period between 2009 and 2019. This map was generated 

using the generate_map() function.

REGION PERCENT CHANGE 
[LOWER LIMIT, UPPER 
LIMIT]

PROBABILITY 
OF DECREASING 
BY 0%

PROBABILITY 
OF DECREASING 
BY 50%

PROBABILITY 
OF DECREASING 
BY 100%

Continental +5.23% [+0.26%,+10.6%] 0.02 0.00 0.00

Canada –16.4% [–30.7%,+0.56%] 0.97 0.00 0.00

United States +6.45% [–1.30%,+12.0%] 0.01 0.00 0.00

US-SC-27 –74.5% [–84.2%,–57.7%] 1.00 1.00 0.00

CA-ON-12 –16.4% [–39.5%,+14.6%] 0.87 0.00 0.00

CA-QC-12 +6.71% [–36.1%,+80.2%] 0.40 0.00 0.00

US-LA-25 +13.6% [–23.3%,+66.2%] 0.26 0.00 0.00

Table 2 Percent change (and 95% credible interval) and probability of changes for the continent-wide trend, national trends, and 
stratum-level trends for select strata for Wood Thrush between 2009–2019. Based on the function that was run, these probabilities 
show the probability of the Wood Thrush population decreasing by 0%, 50%, and 100% in each of the geographical regions.
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Persistent identifier: https://cran.r-project.org/

package=bbsBayes

Licence: MIT
Publisher: Brandon P.M. Edwards
Version published: 2.3.7.2020
Date published: 22/06/21

Code repository (e.g. SourceForge, GitHub etc.) (required) 
Name: GitHub
Identifier: https://github.com/BrandonEdwards/bbsBayes

Licence: MIT
Date published: 22/06/21

2.7 LANGUAGE
R [38], JAGS [25]

(3) REUSE POTENTIAL 

The goal of bbsBayes is to make the analysis of BBS data 
using hierarchical Bayesian models more accessible 
to the conservation community, allowing users who 
are familiar with R to generate population trends and 
trajectories for any of the species monitored by the 
BBS. Because the BBS represents the best population 
monitoring information for most species of birds in North 
America [1, 2, 3], bbsBayes will have reuse potential in 
many settings, including academic, government, and 
conservation NGOs. This package allows an easy-to-use 
function to download route-level for researchers to use 
in custom analyses, or to run the models provided by the 
package. This package also gives the user the capability 
to download stop-level data for researchers requiring 
that type of data. However, bbsBayes does not support 
any analysis for stop-level data; it is for convenience 
only.

For users who are already familiar with analysing BBS 
data, bbsBayes will streamline the process of fetching 
updated BBS data, and running additional models. For 
users of the trend and trajectory estimates published 
by the CWS and USGS, bbsBayes makes accessible the 
models and data-preparation steps underlying the 
estimates. Advanced users may also consider expanding 
the use of the models provided by bbsBayes to other data 
sets. Although the models provided by bbsBayes were 
built for the route-level counts of the BBS and estimate 
trends and trajectories at the stratum-level, one could 
imagine a scenario where a user could modify the model 
files to generate trends at a route-level. Alternatively, 
a user could attempt to modify their own point-level 
dataset into one that resembles counts at the route 
level, to be fed into the models provided by this package. 
Finally, for researchers, the customization options that 
bbsBayes includes will be extremely useful for modelling 
the almost infinite set of ecological mechanisms and 
hypotheses that could be explored with one of the 

greatest long-running, rigorously-collected, continental-
scale, ecological monitoring datasets in the world.  
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