Improved population trajectories for North American swallows, swifts, and nightjars with a hierarchical Bayesian GAM

Brandon P.M. Edwards, Adam C. Smith

Canadian Wildlife Service, Environment and Climate Change Canada, Ottawa, ON, Canada

@bedwards144

Aerial Insectivores

- A declining family of birds
- Population trends changed for the worse in the 1980s (Smith et al. 2015)
- Trajectories using the standard BBS model do not show the inflection point well

Generalized Additive Model

- Rather than fitting data to a fixed slope, allow for temporal flexibility
- Depend on fitted smooth functions
- Information on the shape of the population trajectory can be shared among even the most data-sparse regions (mixed model)

Can a hierarchical Bayesian GAM be used to improve inferences about population trajectories of aerial insectivores?

The Results

Population Change Across Models

Standard

	Standard	GAM	GAMYE
Overall Pop. Change 1966 - 2016	-47.35 %	-18.44 %	-14.96 %
Changepoint Pop. Change 1983 - 2016	-31.65 %	-44.97 %	-40.16 %
Scaled Lea Cross Valid	100		Worse

GAM

GAMYE

TUDES D'OISEAUX CANADA

614000

Model

Better

Model